

BSc PHYSICS HONOURS

Programme	B.Sc. Physics Honours						
Course Title	PYTHON BASICS						
Type of Course	Vocational Minor (SET II: DATA ANALYSIS IN PHYSICS)						
Semester	Ι						
Academic Level	100 - 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Basic computer know	vledge					
Course	This course introduce	es Python pro	ogramming fo	or data analysi	is in Physics		
Summary	with the aid of machine learning. As the first step, Python lang						
	introduced with emp	hasis on Nur	npy and mat	plotlib module	es, for future		
	use in machine learni	ng.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the significance of algorithm & flowchart in development of computer programs	U	F	Instructor-created exams
CO2	Understand and apply basic Python syntax	U, Ap	F, P	Instructor-created exams, Practical Assignment / Observation of Practical Skills
CO3	Understand and apply various conditional statements, as well as	U, Ap	F, P	Instructor-created exams, Practical Assignment /

	understand the modular			Observation of					
	nature of a program using			Practical Skills					
	functions in Python.								
CO4	Apply various modules for several tasks in Python	Ар	Р	Instructor-created exams, Practical Assignment / Observation of Practical Skills/ Home Assignments					
CO5	Understand in detail and apply the Numpy module in data analysis of physical data.	U, Ap	F, P	Instructor-created exams, Practical Assignment / Observation of Practical Skills					
CO6	Understand and apply the matplotlib module for graphical representation of data in various pictorial formats.	U, Ap, C	F, P	Instructor-created exams, Practical Assignment / Observation of Practical Skills/ Home Assignments					
* - Re	* - Remember (R) Understand (U) Apply (Ap) Analyse (An) Evaluate (E) Create (C)								
# - Fac	# - Factual Knowledge(F) Concentual Knowledge (C) Procedural Knowledge (P)								
Metac	ognitive Knowledge (M)	itilowieuge (C) i							
Interac	Metacognitive Knowledge (M)								

Modul e	Uni t	Content	Hrs (45 +30)	Mar ks (70)
		Introduction to Python	12	
	1	Use of algorithm and flowchart in computation.	2	
	2	Introduction to python, interactive and script mode, operators	2	
Ι	3	Data types: numeric, string, list, tuple, set, dictionary (basics)	2	15
	4	List operations, input() function, print() function, different formatted print statements, type() and eval() functions.	3	
	5	Files in Python & file operations: opening in different modes, read and write operations	3	

Chapter 2: p.31-33 (including Python's IDLE Graphics window), Chapter 3,4, Chapter 5: p.95-108 (upto and excluding Command Line Arguments), Chapter 17: p.441-452 (including with statement), from *Core Python Programming*.

		Control statements, Functions and Modules	10	
II	6	Conditional & control statements: if, ifelse, ifelif else statements,	2	
	7	while and for loops, range() function. Nested loops. break & continue statements.	3	15
	8	Functions: built-in functions & user defined functions,	3	
	9	Modules and Packages, lambda expressions. Calendar Module, Math Module, time module, date module, zip()	2	
Chapter	6: p.117	7-139, Chapter 9: p.237-270, Chapter 20: p.515-526 of Book 1		
		Numpy	15	
	10	Numpy Arrays: creating arrays using array(), linspace, logspace, arrange(), zeros() and ones() functions.	2	
	11	Mathematical operations on arrays.	2	
	12	Indexing and slicing arrays, dimension of array	1	1
ш	13	Attributes of arrays: ndim, shape, size, itemsize, dtype, nbytes	1	25
111	14	reshape() and flatten() methods for arrays	1	
	15	Multi-dimensional arrays using array(), zeros() and ones() functions	2	
	16	Indexing and slicing multi-dimensional arrays.	2	
	17	Numpy matrix: creation, access, mathematical operations.	2	
	18	Matrix operations (eigenvalues, dot, determinant, transpose, inverse), random numbers, shape(), reshape() functions.	2	
Chapter	6 of Bo	ok 2		
		Matplotlib module	8	
	19	Plotting, labelling, scale commands in matplotlib	2	
IV	20	subplot, axes, figure, commands in matplotlib	2	15

	19	Plotting, labelling, scale commands in matplotlib	2	
IV	20	subplot, axes, figure, commands in matplotlib	2	
	21	Plotting pie chart, histogram, line graph, scatter plot and bar graphs.	2	
	22	grid(), axhline(), axvline() commands.	2	
	Chapt	er 14 of Book 2		

		PRACTICALS	30	
	Cond	uct any 5 experiments from the given list and 1 additional experiment,		
	decid	ed by the teacher-in-charge, related to the content of the course. The 6 th		
	exper	iment may also be selected from the given list.		
V	1	Developing Algorithms for Formatted Printing - Printing of triangle or inverted triangle (Pyramid form), Binomial coefficients in Pyramid form, fibonacci series.		
	2	Create and print a 3×3 matrix using nested loop.		
	3	Solution of simultaneous equations using Numpy.		
	4	Generate calendar using Calendar module.		
	5	Plot trigonometric functions - sin, cos, tan, x^2 , exp(x).		
	6	Write a program for the ATM Pin verification process		
	7	Diagonalize a 3x3 matrix and verify that by evaluating the eigenvalues. Also evaluate the eigenvectors for the matrix.		
Relevant	section	ns from Book 1 & Book 2		
Books ar	nd Refe	prences:		
1. C	Core Py	thon Programming 2 nd edition or higher, Dr. R. Nageswara Rao, Dreamted	ch press	, 2020
[] (]	Book 1			

2. Machine Learning in Data Science using Python, Dr. R. Nageswara Rao, Dreamtech press, 2022 (Book 2)

Mapping of COs with PSOs and POs :

	PSO	PSO	PSO	PSO	PS	PS	PO1	PO2	PO3	PO4	PO5	РО	РО
	1	2	3	4	05	O6						6	7
CO 1	0	0	0	0	1	0	1	0	0	1	0	0	0
CO 2	0	0	0	0	1	0	1	0	0	1	0	0	0
CO 3	0	0	0	0	1	0	1	0	0	1	1	0	0
CO 4	0	0	0	0	1	0	1	0	0	2	1	0	0
CO 5	0	1	0	0	2	1	1	0	0	2	2	0	0
CO 6	0	1	0	0	2	1	1	0	0	2	1	0	0

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm ent	Project Evaluation	End Semester Examinations
CO 1	✓			\checkmark
CO 2	1			✓
CO 3	1			✓
CO 4		1		✓
CO 5		1		\checkmark
CO 6			1	

BSc PHYSICS HONOURS

Programme	B.Sc. Physics Honours							
Course Title	DATA ANALYSIS IN PHYSICS USING PYTHON							
Type of Course	Vocational Minor (SET II: DATA ANALYSIS IN PHYSICS)							
Semester	П							
Academic Level	100 - 199							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	PHY1VN102- Pythor	n Basics						
Course	This paper continues	s from the p	revious pape	r for data ana	alysis. More			
Summary	data analysis tools are introduced to be used in machine learning, as							
	well as in physical da	ata analysis.	In addition, e	ssential statist	tics required			
	for data analysis is al	so introduce	d.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Become familiar with data format & programs used in data analysis	U	F	Practical Assignment / Observation of Practical Skills
CO2	Understand & apply Pandas module for data analysis	U, Ap	Р	Instructor-creat ed exams, Practical Assignment / Observation of Practical Skills

CO3	Understand & apply Seaborn module for data visualization	U, Ap	Р	Instructor-creat ed exams, Practical Assignment / Observation of Practical Skills			
CO4	Understand the significance of statistical analyses as well as error analysis in physical measurements.	U	F	Instructor-creat ed exams			
CO5	Understand the significance of few distributions commonly found in physical measurements.	U	F	Instructor-creat ed exams/ Home Assignments			
CO6	Apply statistical methods to physical measurements	U, E	Р	Home Assignments			
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Modul	Uni	Content	Hrs	Mar	
e	τ	t		KS	
			+30)	(70)	
		Data file formats	8		
	1	Introducing different data file formats: csv, xls, tab, dat formats.	2		
Ι	2	Jupyter Notebooks using Anaconda and Google Colab: introduction.	2	10	
	3	Familiarization with Google Colab	1		
	4	Familiarization with Anaconda	2		
	5	Reading data files in Jupyter Notebooks.	1		
Basic ove	Basic overview to be given about data formats and software used.				
II	Using Pandas for Data Analysis		12		
	6	Data Analysis Using Pandas: Series and dataframe, creating data frame from an excel spreadsheet - creating dataframe from .csv files.	3	20	

	7	Creating data frame from a python dictionary - creating dataframe from python list of tuples - viewing data frame using loc() and iloc().	3	
	8	Operations on data frames series object - creating series from a dataframe - creating dataframe from series - creating series from numpy array.	2	
	9	Converting series into numpy array - creating series from a dictionary - accessing elements of a series.	2	
	10	Joining data frames - how to join when there is no common column - concatenation of tables - where() method - groupby() method - aggregate functions on data frames.	2	
Chapters	12,13 ((SQL & Regular expressions not required) of Book 1		
		Data Visualization using Seaborn	10	
	10	Loading datasets in Seaborn, Distribution plot	1	
	11	Count plot, box plot, scatter plot, joint plot.	2	
III	12	Line Plot, displaying scatter plot with regression line	2	20
	13	Creating subplots	1	
	14	Heat map - cat plot	2	
	15	Violin plot - pair plot.	2	
Chapter 1	15 of B	ook 1		
		Basic Statistics & Error Analysis	15	
	16	Preliminaries of Error Analysis: errors as uncertainties, inevitability of uncertainty,	2	
	17	Importance of knowing the uncertainties.	2	
	18	Statistical analysis of random uncertainties: random and systematic errors, the mean and standard deviation.	2	
IV	19	Standard deviation as the uncertainty in a single measurement, the standard deviation of the mean, systematic errors.	2	20
	20	The Normal Distribution: Histograms and distributions, limiting distributions, the normal distribution.	3	
	21	The Standard deviation as 68% confidence limit, justification of the mean as best estimate.	2	
	22	The Poisson Distribution: Definition of the Poisson Distribution, Properties of the Poisson Distribution.	2	

Sections	1.1-1.3; 4.1-4.6; 5.1-5.5; and 11.1-11.3 of Book 2					
	PRACTICALS	30				
	Conduct any 6 experiments from the given list and 1 additional experiment,					
	decided by the teacher-in-charge, related to the content of the course. The 7 th					
	experiment may also be selected from the given list.					
	1. Familiarising Jupyter notebook using Colab/Anaconda and					
	basic coding					
V	2. Read data from different output format (csv, xls, tab, dat, txt)					
	and save it in a specific format (csv, dat)					
	3. Heat map, Box plot, scatter plot					
	4. Violin plot, Pair plot					
	5. Basic statistics - plots including error bars					
	6. Grouping example using colab					
	7. Create series from a dataframe and dataframe from series					
	using numpy array.					
Books an	d References:					
1. Machine Learning in Data Science using Python, Dr. R. Nageswara Rao, Dreamtech press, 2022 (Book 1)						
2. A	2. An Introduction to Error Analysis, John R. Taylor 2 nd edition, University Science Books, 1996 (Book 2)					

Mapping of COs with PSOs and POs :

	PS	PSO	PSO	PSO4	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	2	3		05	06							
CO 1	0	0	0	0	1	0	1	0	0	2	1	0	0
CO 2	0	0	0	0	2	0	1	0	0	2	1	0	0
CO 3	0	0	0	0	2	0	1	0	0	2	1	0	0
CO 4	0	1	2	0	1	1	1	0	0	1	2	0	0
CO 5	0	1	1	0	1	1	1	0	0	1	2	0	0
CO 6	0	1	1	0	1	1	1	0	0	1	2	0	0

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal	Assignm	Project	End Semester
	Exam	ent	Evaluation	Examinations
CO 1	~			✓
CO 2	1			✓
CO 3	1			✓
CO 4		~		✓
CO 5		~		✓
CO 6			√	

BSc PHYSICS HONOURS

Programme	B.Sc. Physics Honours					
Course Title	DATA ANALYSIS IN PHYSICS USING MACHINE LEARNING					
Type of Course	Vocational Minor (S	ET II: DAT	A ANALYS	IS IN PHYSI	CS)	
Semester	ш					
Academic Level	200 - 299					
Course Details	Credit	Lecture	Tutorial	Practical	Total	
		per week	per week	per week	Hours	
	4	3	-	2	75	
Pre-requisites	1. Fundamentals of P	rogramming	Concepts			
	2. PHY1VN102- Pyt	hon Basics				
	3. PHY2VN102- Data Analysis in Physics Using Python					
Course Summary	This course explores Machine Learning fundamentals: types, challenges, and model training techniques like Linear Regression, Gradient Descent, KNN, and clustering. Analyze data using Scikit-learn, handle classification problems with performance evaluation measures on real datasets.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Grasp the concepts and importance of Machine Learning, its types, and	U	С	Instructor-crea ted exams / Quiz

	real-world problem-solving applications.					
CO2	Understand linear regression, model evaluation metrics, and various types of regression. They will apply this knowledge practically using examples.	Ар	Р	Practical Assignment / Observation of Practical Skills		
CO3	Master in K-Nearest Neighbor classification, decision trees, entropy, Gini index, and K-means clustering, demonstrated through practical applications with sample datasets.	Ар	Р	Seminar Presentation / Group Tutorial Work		
CO4	Apply classification algorithms to MNIST data, including binary classifiers and multilabel classification, and interpret performance measures like confusion matrix, precision, recall, and ROC curve	U	С	Instructor-crea ted exams / Home Assignments		
CO5	Learn to implement and construct a ML model for one of the problems mentioned.	Ар	Р	One Minute Reflection Writing assignments/ Vice Voce		
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Modul e	Uni t	Content	Hrs (45 +30)	Mar ks (70)
Ι		Foundations of Machine Learning	11	15
	1	Introduction to Machine Learning - Need for Machine Learning - Machine Learning model	1	
	2	Challenges in ML - Applications of ML	1	
	3	Types of ML algorithms - Supervised ML Algorithms - Classification - Regression -	1	

	4	Exploring Unsupervised Learning, Reinforcement Learning -	2	
	5	Preparing Data - Steps involved in data cleaning - Data Standardization - Data Scaling, Binarization - Data Labeling,	3	
	6	Feature Selection Techniques - Detecting Outliers - Z score - Optimization Algorithm - Gradient Descent - SGD	3	
	Sectio	ons from 9.1 - 9.9 of Chapter 9 of Book 2		
II		Regression Analysis: Techniques, Evaluation, and Practical Applications	11	18
	7	Overview of how Regression works - Model evaluation metrics - Types of Regression	2	
	8	Understanding Linear Regression, Simple Linear regression - Variables - Linear Regression - Linear equation - The r-squared value	3	
	9	Practical use of Simple Linear regression - An example problem using sample data (home prices)	3	
	10	Make the data - identify the features - Training and Testing - another example problem for linear regression (Salary data)	1	
	11	Multiple linear regression - Example problem using sample data	2	
	1. 2. 3.	Section 10.1 - 10.4 of Chapter 10 of Book 2 Chapter 19 page no. 382 - 400 of Book 3 Chapter 20 page no. 401 - 408 of Book 3		
III		ML Classification & Clustering Essentials	14	25
	12	Classification Algorithms - K-Nearest Neighbour classifier - How to select K value	2	
	13	Calculate the distance metric between two points - Example problem to construct the classifier - use breast cancer data set	3	
	14	Decision Trees - Entropy - How to calculate total entropy for a dataset	3	
	15	Gini Index	1	
	16	Comparison between Gini index and entropy- Example problem using a given data set	2	
	17	Clustering Algorithms - K- means clustering	1	
	18	Rules to generate clusters - Elbow method - Sample problem using a standard data set	2	
	1.	Sections and references from Chapters 29 page no. 572 - 585 of Book 3		

	2.	Sections and references from Chapters 30 page no. 591 - 607 of Book 3		
	3.	Chapter 11 Section 11.3 - 11.4		
IV		Classification: Metrics & Multilabel Analysis	9	12
	19	Classification problem using MNIST data	2	
	20	Training a binary classifier	2	
	21	Performance Measures - Confusion Matrix - Precision and Recall - ROC curve	3	
	22	Multilabel Classification, multi output classification	2	
	1.	Sections from Chapter 3 page no. 85 - 108 of Book 1		
V		Hands-on Data Structures:	30	
	I	Practical/Project Applications, Case Study and Course Project		
	1	Implement the following:		
		1. Classification of iris data using KNN:		
		Data: Read from Scikit-learn		
		2. Classification of iris data using K-means Cluster:		
		Data: Read from Scikit-learn		
		3. Draw the confusion matrix of iris dat:		
		Data: Use the classification results from experiments 1 & 2		
		4. Design ML Classifier: To classify RR Lyrae stars using KNN.		
	1.	https://scikit-learn.org/stable/auto_examples/neighbors/plot_classific		
	2.	<u>ation.ntmi#spnx-gir-auto-examples-neignbors-piot-classification-py</u> <u>https://www.geeksforgeeks.org/analyzing-decision-tree-and-k-means</u> -clustering-using-iris-dataset/		
	3.	https://www.kaggle.com/code/ankumagawa/knn-confusion-matrix-iri		
	4.	https://sigmoidal.ai/en/k-nearest-neighbors-k-nn-for-classifying-rr-ly rae-stars/		
Books an	d Refe	rences:	•	

- 1. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Third Edition by Aurélien Géron. (Book 1)
- 2. Data Science and Machine Learning using Python by Reema Thereja (Book 2)
- 3. Machine Learning in Data Science using Python by R Nageswara Rao (Book 3)

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PS O6	PO1	PO2	PO3	PO4	PO5	PO 6	PO 7
CO 1	0	0	1	0	1	0	2	0	0	2	1	0	0
CO 2	0	1	2	0	1	0	2	0	0	2	1	0	0
CO 3	0	1	2	0	1	0	2	0	0	2	1	0	0
CO 4	0	1	2	0	1	0	2	0	0	2	2	0	0
CO 5	0	2	1	1	1	0	2	0	1	2	1	0	0
CO 6	0	0	1	0	1	0	2	0	0	2	1	0	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal	Assignm	Project	End Semester
	Exam	ent	Evaluation	Examinations
CO 1	1			✓
CO 2	1			✓
CO 3	1			✓
CO 4		1		✓
CO 5		1		✓
CO 6			✓	

BSc PHYSICS HONOURS

Programme	B.Sc. Physics Honours								
Course Title	APPLICATIONS OF ADVANCED MACHINE LEARNING & ARTIFICIAL INTELLIGENCE IN PHYSICS								
Type of Course	Vocational Minor (SET II: DATA ANALYSIS IN PHYSICS)								
Semester	VIII								
Academic Level	300 - 399								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
	per week		per week	per week	Hours				
	4	4	-	-	60				
Pre-requisites	1. PHY1VN102- Pyt	thon Basics							
	2. PHY2VN102- Dat	a Analysis ir	n Physics Usi	ng Python					
	3. PHY3VN202- Data Analysis in Physics Using Machine Learning								
Course Summary	This course explores idea about AI. It a Learning Techniques	the fundam lso explains Deep Learn	entals of Art the advanc ing and CNN	tificial Intellig ed concepts Is are introduc	gence: Basic of Machine ced.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Acquire expertise in DBSCAN for spatial clustering and neural networks for comprehensive data analysis and pattern recognition proficiency.	Ар	Р	Practical Assignment / Observation of Practical Skills

CO2	Grasp the significance of SVM, apply it using Python, adjust parameters, evaluate pros/cons, and employ it across varied applications.	U	С	Instructor-creat ed exams / Quiz				
CO3	Understand the Deep Learning concepts, utilise the TensorFlow/Keras framework, grasp neural network variants, and understand various neural network architectures.	U	С	Seminar Presentation / Group Tutorial Work				
CO4	Develop machine learning models for practical applications, enhancing skills in classification, feature selection, and model evaluation techniques.	Ар	Р	Instructor-crea ted exams / Home Assignments				
CO5	Grasp the concepts and importance of Artificial Intelligence, historical context and how the brain processes information.	U	С	One Minute Reflection Writing assignments				
* - Rei	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Fac Metaco	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Modul	Unit	Content	Hrs	Mark
e			(48	S
			+12	(70)
			,	
		Neural Networks and Clustering Techniques in ML	13	18
	1	Density Based Spatial Clustering of Applications with Noise (DBSCAN) - Understand how DBSCAN works	2	
I	2	Algorithmic steps for DBSCAN clustering - parameter estimation	1	
	3	Python implementation of DBSCAN using Scikit-learn - example using random sample generation	3	
	4	Neural Network - Working of a neural network - model - Pros and Cons	3	

	5	Applications of neural networks - Activation Function - Steps	4	
		scikit-learn (not for examination)		
	Sectio	ons 11.5 - 11.5.5 and 11.7 - 11.7.6 of Chapter 11 of Book 1		
		Support Vector Machine	11	16
	6	Support Vector Machine (SVM) - Need of SVM	2	
Π	7	2		
	8	Working of SVM - Advantages and Disadvantages of SVM	2	
	9	Applications of SVM	2	
	10	Tuning hyperparameters - Python implementation of SVM - Example data using breast cancer (Not for examination)	3	
	Sectio	on 11.8 - 11.8.6 of Chapter 11 of Book 1		
		Advanced Machine Learning Techniques	13	20
	11	Deep Learning - Working of DL Model - Comparison between ML	2	
		and DL		
ш	12	Applications of Deep Learning - Libraries for implementing DL - TensorFlow and Keras	3	
	13	Types of Neural Networks - ANN - MLP - CNN - RNN	3	
	14	Architecture of Keras - Model - Layer	2	
	15	Loss - Optimizer - Metrics	1	
	16	Training the model - With ionosphere data to identify any structure is present in a radar data using Keras (Not for examination)	2	
	Sectio	on 12.1 - 12.4 of Chapter 12 of Book 1		
		Foundations of Artificial Intelligence	11	16
	17	What is Artificial Intelligence - Turing Test - Cognitive modeling approach	2	
IV	18	Foundations of AI - Philosophy	2	
	19	How do brain process information - How can we build an efficient computer	1	
	20	History of AI - The birth - Early Enthusiasm - Availability of large data sets	2	
	21	Knowledge-based systems - AI adopts the scientific method	2	

	22	Intelligent agents -The State of art	2								
	Sectio	Section 1.1 - 1.4 of Chapter 1 of Book 2									
		OPEN ENDED MODULE	12								
	Implement one of the following tasks or any other relevant project:										
	1. Pho	otometric Redshift Estimation using the data:									
V	Data:	Read from Scikit-learn									
	2. Dev	velop a neural network for the detection of exoplanet:									
	Data:	Data: Repository given in the reference section									
	3. Develop a SVM model for the detection of exoplanet:										
	Data:	Repository given in the reference section									
	1.	https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/tutorial/astro nomy/regression.html									
	2. <u>https://github.com/gabrielgarza/exoplanet-deep-learning/tree/master</u>										
Books o	f Study:										
1. I	Data Scie	ence and Machine Learning using Python by Reema Thereja									
2. A	2. Artificial Intelligence – A Modern Approach Third Edition by Stuart Russel and Peter Norvig.										
Reference	ce:										

1. Machine Learning in Data Science using Python by R Nageswara Rao

Mapping of COs with PSOs and POs :

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PS O6	PO1	PO2	PO3	PO4	PO5	PO 6	PO 7
CO 1	2	1	1	2	1	1	1	1	2	2	2	1	1
CO 2	1	2	2	1	1	1	1	1	2	2	2	1	1
CO 3	1	1	3	1	2	1	1	1	2	3	3	1	1
CO 4	1	2	3	3	1	1	1	1	3	3	3	1	1
CO 5	1	1	1	1	3	1	2	1	1	2	1	1	1
CO 6	2	1	1	2	1	1	1	1	2	2	2	1	1

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

	Internal Exam	Assignm	Project	End Semester
		ent	Evaluation	Examinations
CO 1	<i>✓</i>			✓
CO 2	✓			✓
CO 3	1			✓
CO 4		1		✓
CO 5		1		✓
CO 6			1	

GENERAL FOUNDATION COURSES